Generalized projection pursuit regression

نویسندگان

  • Ole Christian Lingjærde
  • Knut Liestøl
چکیده

Projection pursuit regression (PPR) can be used to estimate a smooth function of several variables from noisy and scattered data. The estimate is a sum of smoothed one-dimensional projections of the variables. This paper discusses an extension of PPR to exponential family distributions, called generalized projection pursuit regression (GPPR). The proposed model allows multiple responses and nonlinear projections of the variables. Estimators are defined as minimizers of penalized cost functionals, and estimation is related to the local scoring procedure for generalized additive models (GAMs). Smooths are updated using a blockwise Gauss–Seidel (BGS) method, and convergence is shown for this procedure. The use of generalized cross validation (GCV) to estimate smoothing parameters is discussed. Experimental results are shown for two types of data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Projection pursuit regression for moderate non-linearities

We present methods specially designed to be effective with moderately non-linear regression relationships. The model fitted is of the Projection Pursuit Regression (PPR) type with a smooth, non-parametric link function connecting the mean response to a linear combination of the regressors. New algorithms, close to ordinary linear regression, are developed. Considerable numerical evidence is giv...

متن کامل

Functional Adaptive Model Estimation

In this article we are interested in modeling the relationship between a scalar, Y , and a functional predictor, X(t). We introduce a highly flexible approach called ”Functional Adaptive Model Estimation” (FAME) which extends generalized linear models (GLM), generalized additive models (GAM) and projection pursuit regression (PPR) to handle functional predictors. The FAME approach can model any...

متن کامل

A Matching Pursuit Generalized Approximate Message Passing Algorithm

This paper proposes a novel matching pursuit generalized approximate message passing (MPGAMP) algorithm which explores the support of sparse representation coefficients step by step, and estimates the mean and variance of non-zero elements at each step based on a generalized-approximate-message-passing-like scheme. In contrast to the classic message passing based algorithms and matching pursuit...

متن کامل

Nonparametric Estimation of Nonlinear Money Demand Cointegration Equation by Projection Pursuit Methods

Money demand equation continues to attract attention of econometricians with a new wrinkle provided by cointegration. We use projection pursuit (PP) regressions pioneered by Friedman and Stuetzle (1981) to suggest new estimates of partials of conditional expectations of the regressands with respect to the regressors and prove their consistency. Since the usual cointegration methodology involves...

متن کامل

On the Use of Projection Pursuit Constraints for Training Neural Networks

\Ve present a novel classifica t.ioll and regression met.hod that combines exploratory projection pursuit. (unsupervised traiuing) with projection pursuit. regression (supervised t.raining), t.o yield a. nev,,' family of cost./complexity penalLy terms . Some improved generalization properties are demonstrat.ed on real \vorld problems.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 20  شماره 

صفحات  -

تاریخ انتشار 1998